Estimation of Standard Auction Models EC 2022

Yeshwanth Cherapanamjeri¹, Constantinos Daskalakis², **Andrew Ilyas**², Manolis Zampetakis¹ ¹UC Berkeley, ²MIT EECS

• Setting: A repeated auction with k > 1 agents

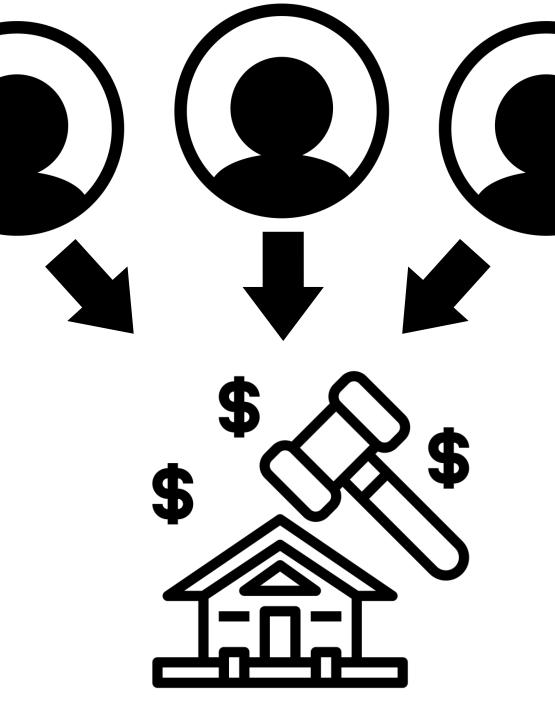
- Setting: A repeated auction with k > 1 agents
 - For each auction, we can only see the *winner* of the item $W \in [k]$ and the price they paid Y

- Setting: A repeated auction with k > 1 agents
 - For each auction, we can only see the winner of the item $W \in [k]$ and the price they paid Y
 - Example: sealed-bid auction, Dutch auctions, etc.

- Setting: A repeated auction with k > 1 agents
 - For each auction, we can only see the winner of the item $W \in [k]$ and the price they paid Y
 - Example: sealed-bid auction, Dutch auctions, etc.
- **Goal:** Estimate the valuation distribution $G_i(v)$ of each agent *i* under independent private values (IPV)

- Setting: A repeated auction with k > 1 agents
 - For each auction, we can only see the winner of the item $W \in [k]$ and the price they paid Y
 - Example: sealed-bid auction, Dutch auctions, etc.
- **Goal:** Estimate the valuation distribution $G_i(v)$ of each agent *i* under independent private values (IPV)
 - Applications: analyze auction performance, simulate interventions

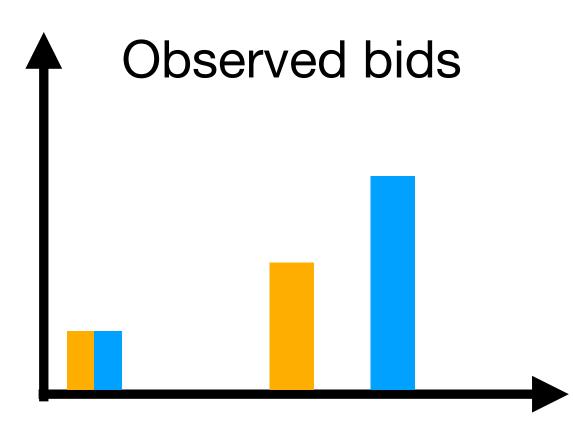
- Setting: A repeated auction with k > 1 agents • For each auction, we can only see the *winner* of the item $W \in [k]$ and the price they paid Y
 - Example: sealed-bid auction, Dutch auctions, etc.
- Goal: Estimate the valuation distribution $G_i(v)$ of each agent *i* under independent private values (IPV)
 - Applications: analyze auction performance, simulate interventions

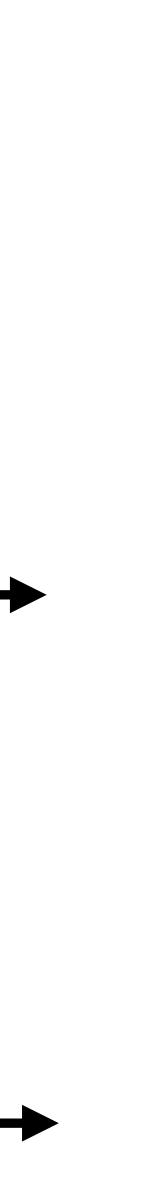


- Setting: A repeated auction with k > 1 agents
 - For each auction, we can only see the *winner* of the item $W \in [k]$ and the price they paid Y
 - Example: sealed-bid auction, Dutch auctions, etc.
- Goal: Estimate the valuation distribution $G_i(v)$ of each agent *i* under independent private values (IPV)
 - Applications: analyze auction performance, simulate interventions

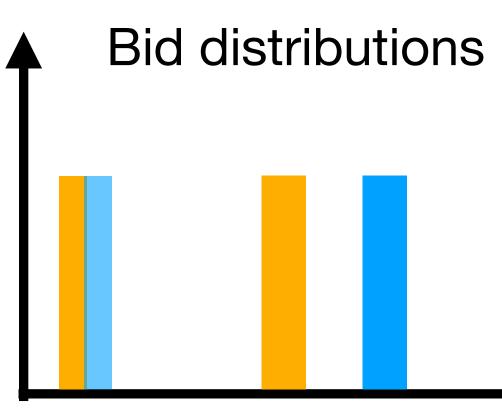
"Agent W won and paid Y"

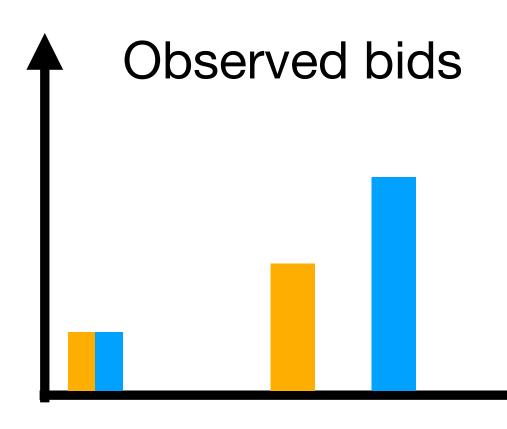


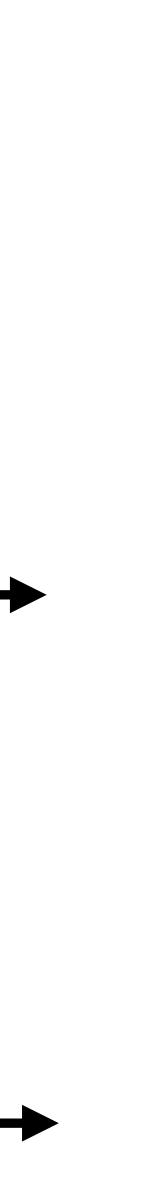




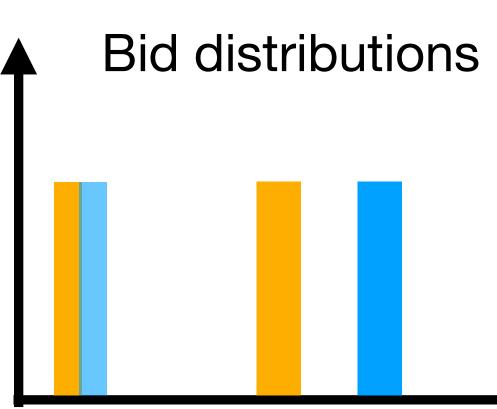
- Problem 1: Learning bid distributions incurs bias
 - We only observe samples from agent *i* when they win, so we <u>under-sample</u> smaller bids

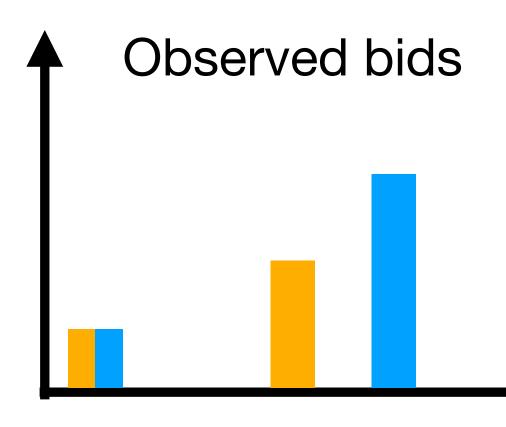


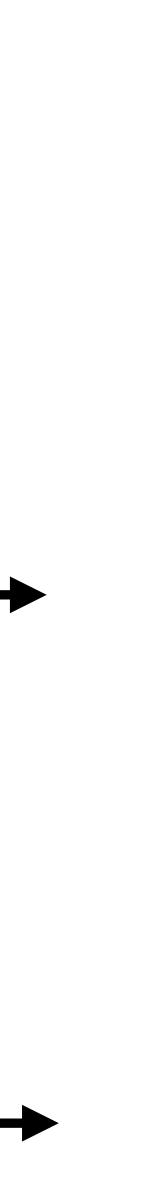




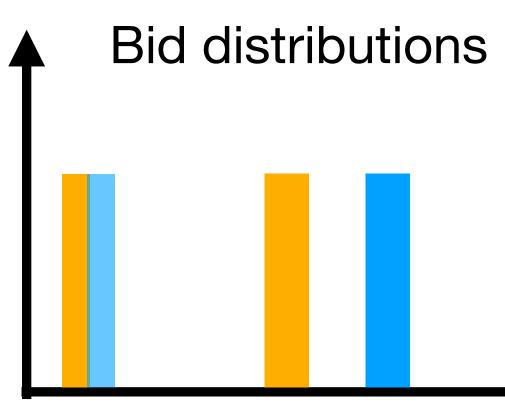
- **Problem 1:** Learning bid distributions incurs bias
 - We only observe samples from agent *i* when they win, so we <u>under-sample</u> smaller bids
- Problem 2: Converting bids into values
 - For first-price auctions, need to assume equilibrium and solve for values

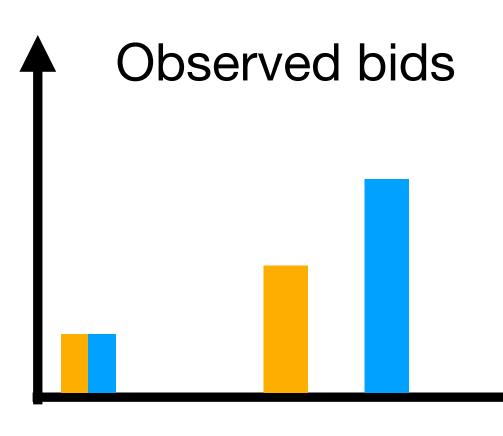


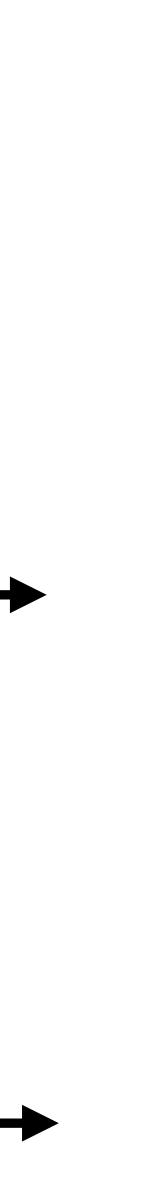




- Problem 1: Learning bid distributions incurs bias
 - We only observe samples from agent *i* when they win, so we <u>under-sample</u> smaller bids
- Problem 2: Converting bids into values
 - For first-price auctions, need to assume equilibrium and solve for values
- **Goal:** <u>Estimation</u> with minimal assumptions (no Lipschitz densities, tail conditions, smoothness, etc.)







- Identification results (e.g., Athey & Haile, 2001)
 - This work: efficient algorithms, finite-sample rates

Haile, 2001) nite-sample rates

- Identification results (e.g., Athey & Haile, 2001)
 - This work: efficient algorithms, finite-sample rates
- Parametric assumptions (e.g., Athey, Levin & Seira, 2011)
 - important for counterfactuals

• This work: learn distributions non-parametrically in Kolmogorov, Levy, TV—-

- Identification results (e.g., Athey & Haile, 2001) • This work: efficient algorithms, finite-sample rates Parametric assumptions (e.g., Athey, Levin & Seira, 2011) • This work: learn distributions non-parametrically in Kolmogorov, Levy, TV—-
- - important for counterfactuals
- All bids observed (e.g., Guerre, Perrigne & Vuong, 2000)
 - This work: only price paid by the winner is observed (first or second price)

- Identification results (e.g., Athey & Haile, 2001) • This work: efficient algorithms, finite-sample rates Parametric assumptions (e.g., Athey, Levin & Seira, 2011) • This work: learn distributions non-parametrically in Kolmogorov, Levy, TV—-
- - important for counterfactuals
- All bids observed (e.g., Guerre, Perrigne & Vuong, 2000)
 - This work: only price paid by the winner is observed (first or second price)
- Symmetric (e.g., Menzel & Morganti, 2013)
 - This work: bidders each have their own value distribution (for first price, this eliminates $F_i(z) = F(z)^{1/k}$ as a valid estimation method)

- Identification results (e.g., Athey & Haile, 2001) • This work: efficient algorithms, finite-sample rates Parametric assumptions (e.g., Athey, Levin & Seira, 2011) • This work: learn distributions non-parametrically in Kolmogorov, Levy, TV—-
- - important for counterfactuals
- All bids observed (e.g., Guerre, Perrigne & Vuong, 2000)
 - This work: only price paid by the winner is observed (first or second price)
- Symmetric (e.g., Menzel & Morganti, 2013)
 - This work: bidders each have their own value distribution (for first price, this eliminates $F_i(z) = F(z)^{1/k}$ as a valid estimation method)
- Partial observation model (Blum, Mansour & Morgenstern, 2015)

Bid distributions F_i supported on [0,1] satisfy $|F_i(x) - F_i(y)| \ge \lambda |x - y|$

Bid distributions F_i supported on [0 Agents sample $X_i \sim F_i(\cdot)$

Bid distributions F_i supported on [0,1] satisfy $|F_i(x) - F_i(y)| \ge \lambda |x - y|$

Bid distributions F_i supported on [0,1] satisfy $|F_i(x) - F_i(y)| \ge \lambda |x - y|$ Agents sample $X_i \sim F_i(\cdot)$ We observe winner $W = \arg \max X_i$ and winning price $Y = X_W$ $i \in |k|$

Bid distributions F_i supported on [0,1] satisfy $|F_i(x) - F_i(y)| \ge \lambda |x - y|$ Agents sample $X_i \sim F_i(\cdot)$ We observe winner $W = \arg \max X_i$ and winning price $Y = X_W$ $i \in |k|$

neorem: Can compute
$$\widehat{F}_i$$
 such that $\mathscr{W}(F_i, \widehat{F}_i) \leq \epsilon$
w.p. 1 – δ using $O\left((\epsilon/2\lambda)^{4k} \cdot \log(1/\delta)\right)$ samples

• Can we do better than exponential sample complexity?

- Can we do better than exponential sample complexity?
- Problem: consider k agents with uniform $F_i(\cdot)$

- Can we do better than exponential sample complexity?
- Problem: consider k agents with uniform $F_i(\cdot)$
 - Probability of observing a winning bid in the range $[0, \varepsilon]$ is ε^k

- Can we do better than exponential sample complexity?
- Problem: consider k agents with uniform $F_i(\cdot)$
 - Probability of observing a winning bid in the range $[0, \varepsilon]$ is ε^k
 - So w.h.p, never observe samples from $[0, \varepsilon] \rightarrow$ learning is impossible

- Can we do better than exponential sample complexity?
- Problem: consider k agents with uniform $F_i(\cdot)$
 - Probability of observing a winning bid in the range $[0, \varepsilon]$ is ε^k
 - So w.h.p, never observe samples from $[0, \varepsilon] \rightarrow$ learning is impossible
- Can formalize this to an exponential lower bound

- Can we do better than exponential sample complexity?
- Problem: consider k agents with uniform $F_i(\cdot)$
 - Probability of observing a winning bid in the range $[0, \varepsilon]$ is ε^k
 - So w.h.p, never observe samples from $[0, \varepsilon] \rightarrow$ learning is impossible
- Can formalize this to an exponential lower bound
- Solution: learning over effective support (Blum, Mansour & Morgenstern '15)

• Effective support regime: [p, 1], with $\mathbb{P}(Y \le p) \ge \gamma$

- Effective support regime: [p, 1], with $\mathbb{P}(Y \le p) \ge \gamma$

• Intuitively: estimate $F_i(x)$ for x-values that will win with constant probability

- Effective support regime: [p, 1], with $\mathbb{P}(Y \le p) \ge \gamma$
 - Intuitively: estimate $F_i(x)$ for x-values that will win with constant probability
- "Lower bound on density" assumption no longer needed

- Effective support regime: [p, 1], with $\mathbb{P}(Y \le p) \ge \gamma$
 - Intuitively: estimate $F_i(x)$ for x-values that will win with constant probability
- "Lower bound on density" assumption no longer needed

w.p.
$$1 - \delta$$
 using O (

- **Theorem:** The same algorithm yields sup $|F_i(x) \widehat{F}_i(x)| \le \epsilon$ $x \in [p,1]$
 - $(\log(k/\delta)/(\gamma^4\epsilon^2))$ samples

Define:

Define:

 $H_i(z) = \mathbb{P}(Y \le z, W = i) - \max$ bid distribution conditioned on *i* winning

Define:

 $H_i(z) = \mathbb{P}(Y \le z, W = i)$ — max bid distribution conditioned on i winning $H(z) = \mathbb{P}(Y \le z)$ — unconditional max bid distribution

Define:

 $H_i(z) = \mathbb{P}(Y \le z, W = i) - \max$ bid distribution conditioned on *i* winning $H(z) = \mathbb{P}(Y \leq z)$ — unconditional max bid distribution

Density of H_i : $h_i(z) = f_i(z) \cdot \prod F_i(z)$ j≠i

Density of H_i : $h_i(z) = f_i(z) \cdot \prod_{j \neq i} F_j(z)$

Density of H_i : $h_i(z) = f_i(z) \cdot \prod_{j \neq i} F_j(z)$

Simplifying:

Density of H_i : $h_i(z) = f_i(z) \cdot \prod F_j(z)$ j≠i $\frac{h_i(z)}{\prod_{j \neq i} F_j(z)} = f_i(z)$

Simplifying:

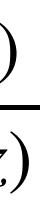
Density of H_i : $h_i(z) = f_i(z) \cdot [F_j(z)]$

Simplifying:

 $\frac{h_i(z)}{\prod_{j \neq i} F_j(z)} = f_i(z)$

j≠i

 $\frac{h_i(z)}{\prod_j F_j(z)} = \frac{f_i(z)}{F_i(z)}$



Density of H_i : $h_i(z) = f_i(z) \cdot F_j(z)$

Simplifying:

 $\frac{h_i(z)}{\prod_{j \neq i} F_j(z)} = f_i(z)$

j≠i

 $\frac{h_i(z)}{\prod_j F_j(z)} = \frac{f_i(z)}{F_i(z)}$

 $\frac{h_i(z)}{H(z)} = \frac{d}{dz} \log(F_i(z))$

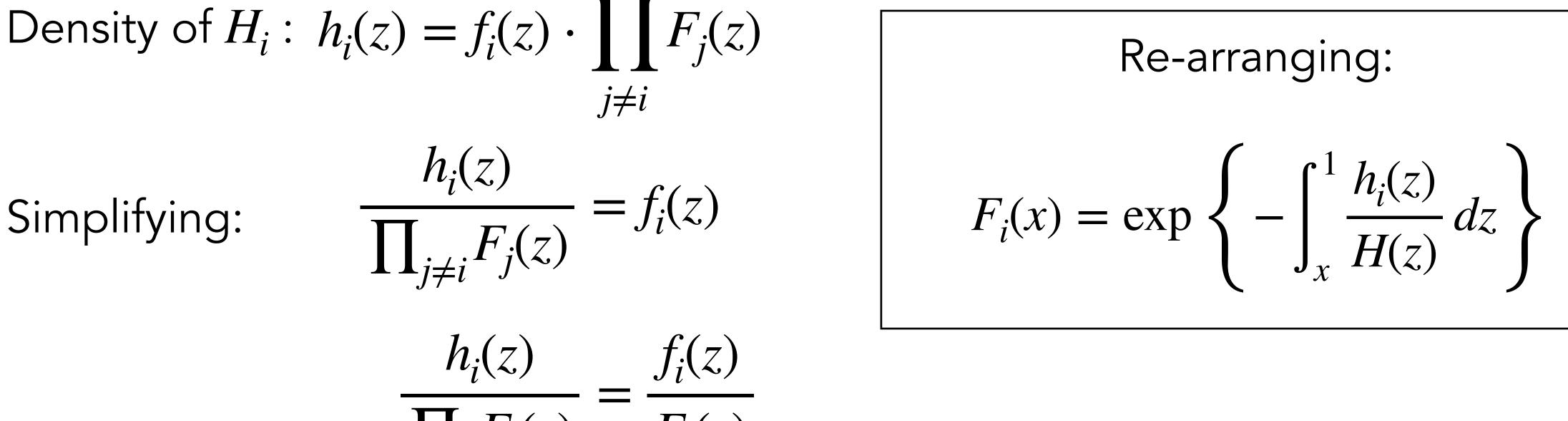
Simplifying:

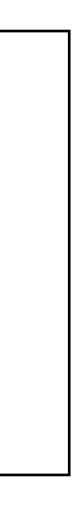
 $\frac{h_i(z)}{\prod_{j \neq i} F_j(z)} = f_i(z)$

j≠i

 $\frac{h_i(z)}{\prod_i F_j(z)} = \frac{f_i(z)}{F_i(z)}$

 $\frac{h_i(z)}{H(z)} = \frac{d}{dz} \log(F_i(z))$





Re-arranging: $F_i(x) = \exp\left\{-\int_x^1 \frac{h_i(z)}{H(z)} dz\right\}$

Estimating with finite samples:

Re-arranging: $F_i(x) = \exp\left\{-\int_x^1 \frac{h_i(z)}{H(z)} dz\right\}$

Estimating with finite samples:

$$\int_{x}^{1} \frac{h_{i}(z)}{H(z)} dz = \int_{0}^{1} \frac{\mathbf{1}_{z \ge x}}{H(z)} dh_{i}$$

Re-arranging: $F_i(x) = \exp\left\{-\int_x^1 \frac{h_i(z)}{H(z)} dz\right\}$

 $F_i(x) = \exp(x)$

Estimating with finite samples:

$$\int_{x}^{1} \frac{h_{i}(z)}{H(z)} dz = \int_{0}^{1} \frac{\mathbf{1}_{z \ge x}}{H(z)} dh_{i}$$

Re-arranging:

$$\exp\left\{-\int_{x}^{1}\frac{h_{i}(z)}{H(z)}\,dz\right\}$$

$$F_{i}(x) = \exp\left\{-\mathbb{E}_{(W,Y)}\left[\frac{\mathbf{1}_{W=i,Y\geq x}}{H(Y)}\right]\right\}$$

First-price Auctions: Partial Observation

First-price Auctions: Partial Observation

- Introduced by [Blum Mansour Morgenstern 2015]:
 - Don't even observe winning price, just the winner
 - But: the econometrician can insert a bid (equivalently, set a reserve price)
 - [BMM15] show how to recover bid distributions
 - Depends on number of agents and Lipschitzness as $(kL)^8$

First-price Auctions: Partial Observation

- Introduced by [Blum Mansour Morgenstern 2015]:
 - Don't even observe winning price, just the winner
 - But: the econometrician can insert a bid (equivalently, set a reserve price)
 - [BMM15] show how to recover bid distributions
 - Depends on number of agents and Lipschitzness as $(kL)^8$

• We can adapt our algorithm to get $O(k \log(L))$ dependence in this setting

To recover agents' valuation distributions, need equilibrium assumptions

Agents draw independent private V_i values from distribution $G_i(\cdot)$

- To recover agents' valuation distributions, need equilibrium assumptions

Assume that agents are at <u>unique</u> Bayes-Nash Equilibrium (BNE)

- To recover agents' valuation distributions, need equilibrium assumptions
- Agents draw independent private V_i values from distribution $G_i(\cdot)$

- Agents draw independent private V_i values from distribution $G_i(\cdot)$
- Assume that agents are at <u>unique</u> Bayes-Nash Equilibrium (BNE)
 - $b_i = \arg \max_{b \in [0, v_i]}$

To recover agents' valuation distributions, need equilibrium assumptions

$$(v_i - b) \cdot \prod_{j \neq i} F_j(b)$$

Agents draw independent private V_i values from distribution $G_i(\cdot)$

Assume that agents are at <u>unique</u> Bayes-Nash Equilibrium (BNE)

 $b_i = \arg \max_{b \in [0, v_i]}$

- To recover agents' valuation distributions, need equilibrium assumptions

$$(v_i - b) \cdot \prod_{j \neq i} F_j(b)$$

Our result: Recover value distributions under BNE with extra k^2 /poly(γ) factor

Bid distributions $F_i(\cdot)$ supported on [0,1] with densities $\alpha \leq f_i(z) \leq \eta$

Bid distributions $F_i(\cdot)$ supported on [0,1] with densities $\alpha \leq f_i(z) \leq \eta$ We observe winner $W = \arg \max X_i$ and **second** price $Y = \max X_i$ $i \in [k]$

$i \neq W$

Bid distributions $F_i(\cdot)$ supported on [0,1] with densities $\alpha \leq f_i(z) \leq \eta$ We observe winner $W = \arg \max X_i$ and **second** price $Y = \max X_i$ $i \in [k]$

Theorem: With probability $1 - \delta$, for $\epsilon \leq e^{-Ck}$ using O(

$i \neq W$

we have
$$\sup_{x \in [0,1]} |F_i(x) - \widehat{F}_i(x)| \le \epsilon$$

 $((1/\epsilon)^{Ck} \cdot \log(1/\delta))$ samples

• First-price auctions:

- First-price auctions:
 - Bid & value distribution recovery over full & effective supports

- First-price auctions:

 - Bid & value distribution recovery over full & effective supports Partial information recovery (don't observe price but can set a reserve price)

- First-price auctions:
 - Bid & value distribution recovery over full & effective supports
 - Partial information recovery (don't observe price but can set a reserve price)
- Second-price auctions:

- First-price auctions:
 - Bid & value distribution recovery over full & effective supports
 - Partial information recovery (don't observe price but can set a reserve price)
- Second-price auctions:
 - Bid/value distribution recovery over full support

- First-price auctions:
 - Bid & value distribution recovery over full & effective supports
 - Partial information recovery (don't observe price but can set a reserve price)
- Second-price auctions:
 - Bid/value distribution recovery over full support Efficient bid/value distribution recovery with reserve price

- First-price auctions:
 - Bid & value distribution recovery over full & effective supports
 - Partial information recovery (don't observe price but can set a reserve price)
- Second-price auctions:
 - Bid/value distribution recovery over full support • Efficient bid/value distribution recovery with reserve price
- Future directions:

- First-price auctions:
 - Bid & value distribution recovery over full & effective supports
 - Partial information recovery (don't observe price but can set a reserve price)
- Second-price auctions:
 - Bid/value distribution recovery over full support
 - Efficient bid/value distribution recovery with reserve price
- Future directions:
 - Effective support result for second-price auctions

- First-price auctions:
 - Bid & value distribution recovery over full & effective supports
 - Partial information recovery (don't observe price but can set a reserve price)
- Second-price auctions:
 - Bid/value distribution recovery over full support
 - Efficient bid/value distribution recovery with reserve price
- Future directions:
 - Effective support result for second-price auctions
 - More general self-selection (e.g., linear regression [Cherapanamjeri et al., 2022])

- First-price auctions:
 - Bid & value distribution recovery over full & effective supports
 - Partial information recovery (don't observe price but can set a reserve price)
- Second-price auctions:
 - Bid/value distribution recovery over full support
 - Efficient bid/value distribution recovery with reserve price
- Future directions:
 - Effective support result for second-price auctions
 - More general self-selection (e.g., linear regression [Cherapanamjeri et al., 2022])

Paper: https://arxiv.org/abs/2205.02060

