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® Fxample: sealed-bid auction, Dutch auctions, etc.

® Goal: Estimate the valuation distribution G(v) ot

each agent I under independent private values (IPV)

® Applications: analyze auction performance,

simulate interventions Agent Wwon and paid $Y
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Bid distributions

® Problem 1: Learning bid distributions incurs bias

® \We only observe samples from agent i when they
win, so we under-sample smaller bids

® Problem 2: Converting bids into values

Observed bids

® For first-price auctions, need to assume
equilibrium and solve for values

® Goal: Estimation with minimal assumptions (no

Lipschitz densities, tail conditions, smoothness, etc.)



Existing Work



Existing Work

® |dentification results (e.g., Athey & Haile, 2001)

® This work: efficient algorithms, finite-sample rates



Existing Work

® |dentification results (e.g., Athey & Haile, 2001)
® This work: efficient algorithms, finite-sample rates
® Parametric assumptions (e.g., Athey, Levin & Seira, 2011)

® This work: learn distributions non-parametrically in Kolmogorov, Levy, TV—-

important for counterfactuals



Existing Work

® |dentification results (e.g., Athey & Haile, 2001)
® This work: efficient algorithms, finite-sample rates
® Parametric assumptions (e.g., Athey, Levin & Seira, 2011)

® This work: learn distributions non-parametrically in Kolmogorov, Levy, TV—-

important for counterfactuals
® All bids observed (e.q., Guerre, Perrigne & Vuong, 2000)

® This work: only price paid by the winner is observed (first or second price)



Existing Work

® |dentification results (e.g., Athey & Haile, 2001)
® This work: efficient algorithms, finite-sample rates
® Parametric assumptions (e.g., Athey, Levin & Seira, 2011)

® This work: learn distributions non-parametrically in Kolmogorov, Levy, TV—-

important for counterfactuals
® All bids observed (e.g., Guerre, Perrigne & Vuong, 2000)

® This work: only price paid by the winner is observed (first or second price)

® Symmetric (e.g., Menzel & Morganti, 2013)

® This work: bidders each have their own value distribution (for first price, this
eliminates Fy(z) = F(2)"% as a valid estimation method)



Existing Work

® |dentification results (e.g., Athey & Haile, 2001)
® This work: efficient algorithms, finite-sample rates
® Parametric assumptions (e.g., Athey, Levin & Seira, 2011)

® This work: learn distributions non-parametrically in Kolmogorov, Levy, TV—-

important for counterfactuals
® All bids observed (e.g., Guerre, Perrigne & Vuong, 2000)

® This work: only price paid by the winner is observed (first or second price)

® Symmetric (e.g., Menzel & Morganti, 2013)

® This work: bidders each have their own value distribution (for first price, this
eliminates Fy(z) = F(2)"% as a valid estimation method)

® Partial observation model (Blum, Mansour & Morgenstern, 2015)
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First-price Auctions
Estimating bid distributions

Bid distributions F; supported on [0,1] satisfy | Fix) — F(y)| > A|x —y]
Agents sample X; ~ Fy( - )

We observe winner W = arg max X; and winning price ¥ = Xy,
€|k}

N

Theorem: Can compute F; such that W(Fi,/l;i) <e€

l

w.p. 1 — 8 using O ((6/2,1)4’< . 1og(1/5)) samples
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First-price Auctions: Lower Bound

® Can we do better than exponential sample complexity?
® Problem: consider k agents with uniform F( - )
® Probability of observing a winning bid in the range [0, €] is &
® So w.h.p, never observe samples from [0, €] — learning is impossible

® Can formalize this to an exponential lower bound

® Solution: learning over effective support (Blum, Mansour & Morgenstern "15)
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First-price Auctions: Effective Support

o Effective support regime: [p, 1], with P(Y < p) >y

® |ntuitively: estimate F(x) for x-values that will win with constant probability

® “[ower bound on density” assumption no longer needed

Theorem: The same algorithm yields sup | Fi(x) — /E(x) | <€
x€|p,1]

w.p. 1 — & using O (log(k/8)/(y*€*)) samples
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Density of H;: h(z) = f(z) - HF(Z)
J

h j#i
Simplifying: 2 _
[, F2 i

hy(z) B 1i(2)
[1,F F©

W) _ d
HD d—Zlog(Fi(Z))
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Algorithm

Density ot H; : h(z) = f(z) - HF,-(Z)
JFI

Re-arranging:

I

J

hi(Z) 'h,
Simplitying: = 1i(2) Fi(x) = exp {_[ e

hy(z) _ 1i(2)
II.F(z)  Fi()

h(z) d
— = —log(F.
o & 0g(Fi(2))
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First-price Auctions
Algorithm

Re-arranging:

1
F(x) = exp {—J ZZ; dz}

Estimating with finite samples:

L y(2) _ ', B _ Lyy—i yon
j H(z) dz_j o " .> s {_ o [ H(Y)

X 0
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¢ Introduced by [Blum Mansour Morgenstern 2015]:
® Don’t even observe winning price, just the winner
® But: the econometrician can insert a bid (equivalently, set a reserve price)

® [BMM15] show how to recover bid distributions

® Depends on number of agents and Lipschitzness as (kL)®

® \We can adapt our algorithm to get O(klog(L)) dependence in this setting
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First-price Auctions: Value Estimation

To recover agents’ valuation distributions, need equilibrium assumptions

Agents draw independent private V; values from distribution Gy( - )

Assume that agents are at unique Bayes-Nash Equilibrium (BNE)

b. = are max (v.—b) - F.(b
l gbe[O,vi)( l ) g ]( )

Our result: Recover value distributions under BNE with extra kz/po\y(y) tactor
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Second-price Auctions

Bid distributions F.( - ) supported on [0,1] with densities a < f(z2) <77

We observe winner W = arg max X; and second price Y = max X;
i€[k] i#W

Theorem: With probability 1 — 0, we have sup | F(x) — /I;i(x)\ <e€

x€(0,1]

fore < e “ using O ((1/€)“* - log(1/5)) samples
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Paper: https://arxiv.org/abs/2205.02060
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