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Setup

• Setting: A repeated auction with  agentsk > 1

• For each auction, we can only see the winner of the 
item  and the price they paid W ∈ [k] Y

• Example: sealed-bid auction, Dutch auctions, etc.

• Goal: Estimate the valuation distribution  of 
each agent  under independent private values (IPV)

Gi(v)
i

• Applications: analyze auction performance, 
simulate interventions “Agent  won and paid $ ”W Y
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Technical Challenges

• Problem 1: Learning bid distributions incurs bias


• We only observe samples from agent  when they 
win, so we under-sample smaller bids 

i

• Problem 2: Converting bids into values


• For first-price auctions, need to assume 
equilibrium and solve for values

• Goal: Estimation with minimal assumptions (no 
Lipschitz densities, tail conditions, smoothness, etc.) 

Bid distributions

Observed bids
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• This work: only price paid by the winner is observed (first or second price)

• Symmetric (e.g., Menzel & Morganti, 2013)


• This work: bidders each have their own value distribution (for first price, this 
eliminates  as a valid estimation method)Fi(z) = F(z)1/k

• Partial observation model (Blum, Mansour & Morgenstern, 2015)
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First-price Auctions

Bid distributions  supported on  satisfy Fi [0,1] |Fi(x) − Fi(y) | ≥ λ |x − y |

Agents sample Xi ∼ Fi( ⋅ )

We observe winner  and winning price W = arg max
i∈[k]

Xi Y = XW

Theorem: Can compute  such that   


w.p.  using  samples

̂Fi 𝒲(Fi, ̂Fi ) ≤ ϵ

1 − δ O ((ϵ/2λ)4k ⋅ log(1/δ))

Estimating bid distributions
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First-price Auctions: Lower Bound

• Can we do better than exponential sample complexity?

• Problem: consider  agents with uniform k Fi( ⋅ )

• Probability of observing a winning bid in the range  is [0, ε] εk

• So w.h.p, never observe samples from   learning is impossible[0, ε] →

• Can formalize this to an exponential lower bound

• Solution: learning over effective support (Blum, Mansour & Morgenstern ’15)
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First-price Auctions: Effective Support

• Effective support regime: , with [p, 1] ℙ(Y ≤ p) ≥ γ

• Intuitively: estimate  for -values that will win with constant probabilityFi(x) x

• “Lower bound on density” assumption no longer needed

Theorem: The same algorithm yields  


w.p.  using  samples

sup
x∈[p,1]

|Fi(x) − ̂Fi (x) | ≤ ϵ

1 − δ O (log(k/δ)/(γ4ϵ2))
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Algorithm

Fi(x) = exp {−∫
1

x

hi(z)
H(z)

dz}

Re-arranging:

Estimating with finite samples:

∫
1

x

hi(z)
H(z)

dz = ∫
1

0

1z≥x

H(z)
dhi Fi(x) = exp {−𝔼(W,Y) [

1W=i,Y≥x

H(Y) ]}
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First-price Auctions: Partial Observation

• Introduced by [Blum Mansour Morgenstern 2015]:


• Don’t even observe winning price, just the winner


• But: the econometrician can insert a bid (equivalently, set a reserve price)


• [BMM15] show how to recover bid distributions


• Depends on number of agents and Lipschitzness as  
(kL)8

• We can adapt our algorithm to get  dependence in this settingO(k log(L))
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First-price Auctions: Value Estimation

To recover agents’ valuation distributions, need equilibrium assumptions

Agents draw independent private  values from distribution Vi Gi( ⋅ )

Assume that agents are at unique Bayes-Nash Equilibrium (BNE) 
 

Our result: Recover value distributions under BNE with extra  factork2/poly(γ)

bi = arg max
b∈[0,vi)

(vi − b) ⋅ ∏
j≠i

Fj(b)
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Second-price Auctions

Bid distributions  supported on  with densities Fi( ⋅ ) [0,1] α ≤ fi(z) ≤ η

We observe winner  and second price W = arg max
i∈[k]

Xi Y = max
i≠W

Xi

Theorem: With probability , we have  


for  using  samples

1 − δ supx∈[0,1] |Fi(x) − ̂Fi (x) | ≤ ϵ

ϵ ≤ e−Ck O ((1/ϵ)Ck ⋅ log(1/δ))
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Paper: https://arxiv.org/abs/2205.02060 
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• Bid & value distribution recovery over full & effective supports

• Partial information recovery (don’t observe price but can set a reserve price) 

• Second-price auctions:

• Bid/value distribution recovery over full support

• Efficient bid/value distribution recovery with reserve price

• Future directions:

• Effective support result for second-price auctions

• More general self-selection (e.g., linear regression [Cherapanamjeri et al., 2022])
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